Autoregressive Models
For a hands-on example, check out the tutorial Building autoregressive models.
GMRFs.generate_car_model
— Functiongenerate_car_model(W::SparseMatrixCSC, ρ::Real; σ=1.0, μ=nothing)
Generate a conditional autoregressive model (CAR) in GMRF form from an adjacency matrix.
Input
W
– Adjacency / weight matrix. Specifies the conditional dependencies between variablesρ
– Weighting factor of the inter-node dependencies. Fulfills 0 < ρ < 1.σ
– Variance scaling factor (i.e. output scale)μ
– Mean vector
Output
A GMRF
with the corresponding mean and precision.
Algorithm
The CAR is constructed using a variant of the graph Laplacian, i.e.
\[Q = \sigma^{-1} \cdot (W 1 - ρ \cdot W).\]