SPDEs
GaussianMarkovRandomFields.SPDE
— TypeSPDE
An abstract type for a stochastic partial differential equation (SPDE).
GaussianMarkovRandomFields.MaternSPDE
— TypeMaternSPDE{D}(κ::Real, ν::Union{Integer, Rational}) where D
The Whittle-Matérn SPDE is given by
\[(κ^2 - Δ)^{\frac{α}{2}} u(x) = 𝒲(x), \quad \left( x \in \mathbb{R}^d, α = ν + \frac{d}{2} \right),\]
where Δ is the Laplacian operator, $κ > 0$, $ν > 0$.
The stationary solutions to this SPDE are Matérn processes.
GaussianMarkovRandomFields.AdvectionDiffusionSPDE
— TypeAdvectionDiffusionSPDE{D}(κ::Real, α::Rational, H::AbstractMatrix,
γ::AbstractVector, c::Real, τ::Real) where {D}
Spatiotemporal advection-diffusion SPDE as proposed in [2]:
\[\left[ \frac{∂}{∂t} + \frac{1}{c} \left( κ^2 - ∇ ⋅ H ∇ \right)^\alpha + \frac{1}{c} γ ⋅ ∇ \right] X(t, s) = \frac{τ}{\sqrt{c}} Z(t, s),\]
where Z(t, s) is spatiotemporal noise which may be colored.